3.696 \(\int \frac {d+e x^2}{\sqrt {a+b \sin ^{-1}(c x)}} \, dx\)

Optimal. Leaf size=329 \[ \frac {\sqrt {\frac {\pi }{2}} e \cos \left (\frac {a}{b}\right ) C\left (\frac {\sqrt {\frac {2}{\pi }} \sqrt {a+b \sin ^{-1}(c x)}}{\sqrt {b}}\right )}{2 \sqrt {b} c^3}-\frac {\sqrt {\frac {\pi }{6}} e \cos \left (\frac {3 a}{b}\right ) C\left (\frac {\sqrt {\frac {6}{\pi }} \sqrt {a+b \sin ^{-1}(c x)}}{\sqrt {b}}\right )}{2 \sqrt {b} c^3}+\frac {\sqrt {\frac {\pi }{2}} e \sin \left (\frac {a}{b}\right ) S\left (\frac {\sqrt {\frac {2}{\pi }} \sqrt {a+b \sin ^{-1}(c x)}}{\sqrt {b}}\right )}{2 \sqrt {b} c^3}-\frac {\sqrt {\frac {\pi }{6}} e \sin \left (\frac {3 a}{b}\right ) S\left (\frac {\sqrt {\frac {6}{\pi }} \sqrt {a+b \sin ^{-1}(c x)}}{\sqrt {b}}\right )}{2 \sqrt {b} c^3}+\frac {\sqrt {2 \pi } d \cos \left (\frac {a}{b}\right ) C\left (\frac {\sqrt {\frac {2}{\pi }} \sqrt {a+b \sin ^{-1}(c x)}}{\sqrt {b}}\right )}{\sqrt {b} c}+\frac {\sqrt {2 \pi } d \sin \left (\frac {a}{b}\right ) S\left (\frac {\sqrt {\frac {2}{\pi }} \sqrt {a+b \sin ^{-1}(c x)}}{\sqrt {b}}\right )}{\sqrt {b} c} \]

[Out]

-1/12*e*cos(3*a/b)*FresnelC(6^(1/2)/Pi^(1/2)*(a+b*arcsin(c*x))^(1/2)/b^(1/2))*6^(1/2)*Pi^(1/2)/c^3/b^(1/2)-1/1
2*e*FresnelS(6^(1/2)/Pi^(1/2)*(a+b*arcsin(c*x))^(1/2)/b^(1/2))*sin(3*a/b)*6^(1/2)*Pi^(1/2)/c^3/b^(1/2)+1/4*e*c
os(a/b)*FresnelC(2^(1/2)/Pi^(1/2)*(a+b*arcsin(c*x))^(1/2)/b^(1/2))*2^(1/2)*Pi^(1/2)/c^3/b^(1/2)+1/4*e*FresnelS
(2^(1/2)/Pi^(1/2)*(a+b*arcsin(c*x))^(1/2)/b^(1/2))*sin(a/b)*2^(1/2)*Pi^(1/2)/c^3/b^(1/2)+d*cos(a/b)*FresnelC(2
^(1/2)/Pi^(1/2)*(a+b*arcsin(c*x))^(1/2)/b^(1/2))*2^(1/2)*Pi^(1/2)/c/b^(1/2)+d*FresnelS(2^(1/2)/Pi^(1/2)*(a+b*a
rcsin(c*x))^(1/2)/b^(1/2))*sin(a/b)*2^(1/2)*Pi^(1/2)/c/b^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.64, antiderivative size = 329, normalized size of antiderivative = 1.00, number of steps used = 21, number of rules used = 9, integrand size = 20, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.450, Rules used = {4667, 4623, 3306, 3305, 3351, 3304, 3352, 4635, 4406} \[ \frac {\sqrt {\frac {\pi }{2}} e \cos \left (\frac {a}{b}\right ) \text {FresnelC}\left (\frac {\sqrt {\frac {2}{\pi }} \sqrt {a+b \sin ^{-1}(c x)}}{\sqrt {b}}\right )}{2 \sqrt {b} c^3}-\frac {\sqrt {\frac {\pi }{6}} e \cos \left (\frac {3 a}{b}\right ) \text {FresnelC}\left (\frac {\sqrt {\frac {6}{\pi }} \sqrt {a+b \sin ^{-1}(c x)}}{\sqrt {b}}\right )}{2 \sqrt {b} c^3}+\frac {\sqrt {\frac {\pi }{2}} e \sin \left (\frac {a}{b}\right ) S\left (\frac {\sqrt {\frac {2}{\pi }} \sqrt {a+b \sin ^{-1}(c x)}}{\sqrt {b}}\right )}{2 \sqrt {b} c^3}-\frac {\sqrt {\frac {\pi }{6}} e \sin \left (\frac {3 a}{b}\right ) S\left (\frac {\sqrt {\frac {6}{\pi }} \sqrt {a+b \sin ^{-1}(c x)}}{\sqrt {b}}\right )}{2 \sqrt {b} c^3}+\frac {\sqrt {2 \pi } d \cos \left (\frac {a}{b}\right ) \text {FresnelC}\left (\frac {\sqrt {\frac {2}{\pi }} \sqrt {a+b \sin ^{-1}(c x)}}{\sqrt {b}}\right )}{\sqrt {b} c}+\frac {\sqrt {2 \pi } d \sin \left (\frac {a}{b}\right ) S\left (\frac {\sqrt {\frac {2}{\pi }} \sqrt {a+b \sin ^{-1}(c x)}}{\sqrt {b}}\right )}{\sqrt {b} c} \]

Antiderivative was successfully verified.

[In]

Int[(d + e*x^2)/Sqrt[a + b*ArcSin[c*x]],x]

[Out]

(e*Sqrt[Pi/2]*Cos[a/b]*FresnelC[(Sqrt[2/Pi]*Sqrt[a + b*ArcSin[c*x]])/Sqrt[b]])/(2*Sqrt[b]*c^3) + (d*Sqrt[2*Pi]
*Cos[a/b]*FresnelC[(Sqrt[2/Pi]*Sqrt[a + b*ArcSin[c*x]])/Sqrt[b]])/(Sqrt[b]*c) - (e*Sqrt[Pi/6]*Cos[(3*a)/b]*Fre
snelC[(Sqrt[6/Pi]*Sqrt[a + b*ArcSin[c*x]])/Sqrt[b]])/(2*Sqrt[b]*c^3) + (e*Sqrt[Pi/2]*FresnelS[(Sqrt[2/Pi]*Sqrt
[a + b*ArcSin[c*x]])/Sqrt[b]]*Sin[a/b])/(2*Sqrt[b]*c^3) + (d*Sqrt[2*Pi]*FresnelS[(Sqrt[2/Pi]*Sqrt[a + b*ArcSin
[c*x]])/Sqrt[b]]*Sin[a/b])/(Sqrt[b]*c) - (e*Sqrt[Pi/6]*FresnelS[(Sqrt[6/Pi]*Sqrt[a + b*ArcSin[c*x]])/Sqrt[b]]*
Sin[(3*a)/b])/(2*Sqrt[b]*c^3)

Rule 3304

Int[sin[Pi/2 + (e_.) + (f_.)*(x_)]/Sqrt[(c_.) + (d_.)*(x_)], x_Symbol] :> Dist[2/d, Subst[Int[Cos[(f*x^2)/d],
x], x, Sqrt[c + d*x]], x] /; FreeQ[{c, d, e, f}, x] && ComplexFreeQ[f] && EqQ[d*e - c*f, 0]

Rule 3305

Int[sin[(e_.) + (f_.)*(x_)]/Sqrt[(c_.) + (d_.)*(x_)], x_Symbol] :> Dist[2/d, Subst[Int[Sin[(f*x^2)/d], x], x,
Sqrt[c + d*x]], x] /; FreeQ[{c, d, e, f}, x] && ComplexFreeQ[f] && EqQ[d*e - c*f, 0]

Rule 3306

Int[sin[(e_.) + (f_.)*(x_)]/Sqrt[(c_.) + (d_.)*(x_)], x_Symbol] :> Dist[Cos[(d*e - c*f)/d], Int[Sin[(c*f)/d +
f*x]/Sqrt[c + d*x], x], x] + Dist[Sin[(d*e - c*f)/d], Int[Cos[(c*f)/d + f*x]/Sqrt[c + d*x], x], x] /; FreeQ[{c
, d, e, f}, x] && ComplexFreeQ[f] && NeQ[d*e - c*f, 0]

Rule 3351

Int[Sin[(d_.)*((e_.) + (f_.)*(x_))^2], x_Symbol] :> Simp[(Sqrt[Pi/2]*FresnelS[Sqrt[2/Pi]*Rt[d, 2]*(e + f*x)])/
(f*Rt[d, 2]), x] /; FreeQ[{d, e, f}, x]

Rule 3352

Int[Cos[(d_.)*((e_.) + (f_.)*(x_))^2], x_Symbol] :> Simp[(Sqrt[Pi/2]*FresnelC[Sqrt[2/Pi]*Rt[d, 2]*(e + f*x)])/
(f*Rt[d, 2]), x] /; FreeQ[{d, e, f}, x]

Rule 4406

Int[Cos[(a_.) + (b_.)*(x_)]^(p_.)*((c_.) + (d_.)*(x_))^(m_.)*Sin[(a_.) + (b_.)*(x_)]^(n_.), x_Symbol] :> Int[E
xpandTrigReduce[(c + d*x)^m, Sin[a + b*x]^n*Cos[a + b*x]^p, x], x] /; FreeQ[{a, b, c, d, m}, x] && IGtQ[n, 0]
&& IGtQ[p, 0]

Rule 4623

Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Dist[1/(b*c), Subst[Int[x^n*Cos[a/b - x/b], x], x, a
 + b*ArcSin[c*x]], x] /; FreeQ[{a, b, c, n}, x]

Rule 4635

Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_)*(x_)^(m_.), x_Symbol] :> Dist[1/c^(m + 1), Subst[Int[(a + b*x)^n*S
in[x]^m*Cos[x], x], x, ArcSin[c*x]], x] /; FreeQ[{a, b, c, n}, x] && IGtQ[m, 0]

Rule 4667

Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.)*((d_) + (e_.)*(x_)^2)^(p_.), x_Symbol] :> Int[ExpandIntegrand[(a
+ b*ArcSin[c*x])^n, (d + e*x^2)^p, x], x] /; FreeQ[{a, b, c, d, e, n}, x] && NeQ[c^2*d + e, 0] && IntegerQ[p]
&& (GtQ[p, 0] || IGtQ[n, 0])

Rubi steps

\begin {align*} \int \frac {d+e x^2}{\sqrt {a+b \sin ^{-1}(c x)}} \, dx &=\int \left (\frac {d}{\sqrt {a+b \sin ^{-1}(c x)}}+\frac {e x^2}{\sqrt {a+b \sin ^{-1}(c x)}}\right ) \, dx\\ &=d \int \frac {1}{\sqrt {a+b \sin ^{-1}(c x)}} \, dx+e \int \frac {x^2}{\sqrt {a+b \sin ^{-1}(c x)}} \, dx\\ &=\frac {d \operatorname {Subst}\left (\int \frac {\cos \left (\frac {a}{b}-\frac {x}{b}\right )}{\sqrt {x}} \, dx,x,a+b \sin ^{-1}(c x)\right )}{b c}+\frac {e \operatorname {Subst}\left (\int \frac {\cos (x) \sin ^2(x)}{\sqrt {a+b x}} \, dx,x,\sin ^{-1}(c x)\right )}{c^3}\\ &=\frac {e \operatorname {Subst}\left (\int \left (\frac {\cos (x)}{4 \sqrt {a+b x}}-\frac {\cos (3 x)}{4 \sqrt {a+b x}}\right ) \, dx,x,\sin ^{-1}(c x)\right )}{c^3}+\frac {\left (d \cos \left (\frac {a}{b}\right )\right ) \operatorname {Subst}\left (\int \frac {\cos \left (\frac {x}{b}\right )}{\sqrt {x}} \, dx,x,a+b \sin ^{-1}(c x)\right )}{b c}+\frac {\left (d \sin \left (\frac {a}{b}\right )\right ) \operatorname {Subst}\left (\int \frac {\sin \left (\frac {x}{b}\right )}{\sqrt {x}} \, dx,x,a+b \sin ^{-1}(c x)\right )}{b c}\\ &=\frac {e \operatorname {Subst}\left (\int \frac {\cos (x)}{\sqrt {a+b x}} \, dx,x,\sin ^{-1}(c x)\right )}{4 c^3}-\frac {e \operatorname {Subst}\left (\int \frac {\cos (3 x)}{\sqrt {a+b x}} \, dx,x,\sin ^{-1}(c x)\right )}{4 c^3}+\frac {\left (2 d \cos \left (\frac {a}{b}\right )\right ) \operatorname {Subst}\left (\int \cos \left (\frac {x^2}{b}\right ) \, dx,x,\sqrt {a+b \sin ^{-1}(c x)}\right )}{b c}+\frac {\left (2 d \sin \left (\frac {a}{b}\right )\right ) \operatorname {Subst}\left (\int \sin \left (\frac {x^2}{b}\right ) \, dx,x,\sqrt {a+b \sin ^{-1}(c x)}\right )}{b c}\\ &=\frac {d \sqrt {2 \pi } \cos \left (\frac {a}{b}\right ) C\left (\frac {\sqrt {\frac {2}{\pi }} \sqrt {a+b \sin ^{-1}(c x)}}{\sqrt {b}}\right )}{\sqrt {b} c}+\frac {d \sqrt {2 \pi } S\left (\frac {\sqrt {\frac {2}{\pi }} \sqrt {a+b \sin ^{-1}(c x)}}{\sqrt {b}}\right ) \sin \left (\frac {a}{b}\right )}{\sqrt {b} c}+\frac {\left (e \cos \left (\frac {a}{b}\right )\right ) \operatorname {Subst}\left (\int \frac {\cos \left (\frac {a}{b}+x\right )}{\sqrt {a+b x}} \, dx,x,\sin ^{-1}(c x)\right )}{4 c^3}-\frac {\left (e \cos \left (\frac {3 a}{b}\right )\right ) \operatorname {Subst}\left (\int \frac {\cos \left (\frac {3 a}{b}+3 x\right )}{\sqrt {a+b x}} \, dx,x,\sin ^{-1}(c x)\right )}{4 c^3}+\frac {\left (e \sin \left (\frac {a}{b}\right )\right ) \operatorname {Subst}\left (\int \frac {\sin \left (\frac {a}{b}+x\right )}{\sqrt {a+b x}} \, dx,x,\sin ^{-1}(c x)\right )}{4 c^3}-\frac {\left (e \sin \left (\frac {3 a}{b}\right )\right ) \operatorname {Subst}\left (\int \frac {\sin \left (\frac {3 a}{b}+3 x\right )}{\sqrt {a+b x}} \, dx,x,\sin ^{-1}(c x)\right )}{4 c^3}\\ &=\frac {d \sqrt {2 \pi } \cos \left (\frac {a}{b}\right ) C\left (\frac {\sqrt {\frac {2}{\pi }} \sqrt {a+b \sin ^{-1}(c x)}}{\sqrt {b}}\right )}{\sqrt {b} c}+\frac {d \sqrt {2 \pi } S\left (\frac {\sqrt {\frac {2}{\pi }} \sqrt {a+b \sin ^{-1}(c x)}}{\sqrt {b}}\right ) \sin \left (\frac {a}{b}\right )}{\sqrt {b} c}+\frac {\left (e \cos \left (\frac {a}{b}\right )\right ) \operatorname {Subst}\left (\int \cos \left (\frac {x^2}{b}\right ) \, dx,x,\sqrt {a+b \sin ^{-1}(c x)}\right )}{2 b c^3}-\frac {\left (e \cos \left (\frac {3 a}{b}\right )\right ) \operatorname {Subst}\left (\int \cos \left (\frac {3 x^2}{b}\right ) \, dx,x,\sqrt {a+b \sin ^{-1}(c x)}\right )}{2 b c^3}+\frac {\left (e \sin \left (\frac {a}{b}\right )\right ) \operatorname {Subst}\left (\int \sin \left (\frac {x^2}{b}\right ) \, dx,x,\sqrt {a+b \sin ^{-1}(c x)}\right )}{2 b c^3}-\frac {\left (e \sin \left (\frac {3 a}{b}\right )\right ) \operatorname {Subst}\left (\int \sin \left (\frac {3 x^2}{b}\right ) \, dx,x,\sqrt {a+b \sin ^{-1}(c x)}\right )}{2 b c^3}\\ &=\frac {e \sqrt {\frac {\pi }{2}} \cos \left (\frac {a}{b}\right ) C\left (\frac {\sqrt {\frac {2}{\pi }} \sqrt {a+b \sin ^{-1}(c x)}}{\sqrt {b}}\right )}{2 \sqrt {b} c^3}+\frac {d \sqrt {2 \pi } \cos \left (\frac {a}{b}\right ) C\left (\frac {\sqrt {\frac {2}{\pi }} \sqrt {a+b \sin ^{-1}(c x)}}{\sqrt {b}}\right )}{\sqrt {b} c}-\frac {e \sqrt {\frac {\pi }{6}} \cos \left (\frac {3 a}{b}\right ) C\left (\frac {\sqrt {\frac {6}{\pi }} \sqrt {a+b \sin ^{-1}(c x)}}{\sqrt {b}}\right )}{2 \sqrt {b} c^3}+\frac {e \sqrt {\frac {\pi }{2}} S\left (\frac {\sqrt {\frac {2}{\pi }} \sqrt {a+b \sin ^{-1}(c x)}}{\sqrt {b}}\right ) \sin \left (\frac {a}{b}\right )}{2 \sqrt {b} c^3}+\frac {d \sqrt {2 \pi } S\left (\frac {\sqrt {\frac {2}{\pi }} \sqrt {a+b \sin ^{-1}(c x)}}{\sqrt {b}}\right ) \sin \left (\frac {a}{b}\right )}{\sqrt {b} c}-\frac {e \sqrt {\frac {\pi }{6}} S\left (\frac {\sqrt {\frac {6}{\pi }} \sqrt {a+b \sin ^{-1}(c x)}}{\sqrt {b}}\right ) \sin \left (\frac {3 a}{b}\right )}{2 \sqrt {b} c^3}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C]  time = 0.68, size = 246, normalized size = 0.75 \[ -\frac {i e^{-\frac {3 i a}{b}} \left (3 e^{\frac {2 i a}{b}} \left (4 c^2 d+e\right ) \sqrt {-\frac {i \left (a+b \sin ^{-1}(c x)\right )}{b}} \Gamma \left (\frac {1}{2},-\frac {i \left (a+b \sin ^{-1}(c x)\right )}{b}\right )-3 e^{\frac {4 i a}{b}} \left (4 c^2 d+e\right ) \sqrt {\frac {i \left (a+b \sin ^{-1}(c x)\right )}{b}} \Gamma \left (\frac {1}{2},\frac {i \left (a+b \sin ^{-1}(c x)\right )}{b}\right )-\sqrt {3} e \left (\sqrt {-\frac {i \left (a+b \sin ^{-1}(c x)\right )}{b}} \Gamma \left (\frac {1}{2},-\frac {3 i \left (a+b \sin ^{-1}(c x)\right )}{b}\right )-e^{\frac {6 i a}{b}} \sqrt {\frac {i \left (a+b \sin ^{-1}(c x)\right )}{b}} \Gamma \left (\frac {1}{2},\frac {3 i \left (a+b \sin ^{-1}(c x)\right )}{b}\right )\right )\right )}{24 c^3 \sqrt {a+b \sin ^{-1}(c x)}} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[(d + e*x^2)/Sqrt[a + b*ArcSin[c*x]],x]

[Out]

((-1/24*I)*(3*(4*c^2*d + e)*E^(((2*I)*a)/b)*Sqrt[((-I)*(a + b*ArcSin[c*x]))/b]*Gamma[1/2, ((-I)*(a + b*ArcSin[
c*x]))/b] - 3*(4*c^2*d + e)*E^(((4*I)*a)/b)*Sqrt[(I*(a + b*ArcSin[c*x]))/b]*Gamma[1/2, (I*(a + b*ArcSin[c*x]))
/b] - Sqrt[3]*e*(Sqrt[((-I)*(a + b*ArcSin[c*x]))/b]*Gamma[1/2, ((-3*I)*(a + b*ArcSin[c*x]))/b] - E^(((6*I)*a)/
b)*Sqrt[(I*(a + b*ArcSin[c*x]))/b]*Gamma[1/2, ((3*I)*(a + b*ArcSin[c*x]))/b])))/(c^3*E^(((3*I)*a)/b)*Sqrt[a +
b*ArcSin[c*x]])

________________________________________________________________________________________

fricas [F(-2)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Exception raised: TypeError} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x^2+d)/(a+b*arcsin(c*x))^(1/2),x, algorithm="fricas")

[Out]

Exception raised: TypeError >>  Error detected within library code:   integrate: implementation incomplete (co
nstant residues)

________________________________________________________________________________________

giac [C]  time = 2.07, size = 485, normalized size = 1.47 \[ -\frac {\sqrt {\pi } d \operatorname {erf}\left (-\frac {i \, \sqrt {2} \sqrt {b \arcsin \left (c x\right ) + a}}{2 \, \sqrt {{\left | b \right |}}} - \frac {\sqrt {2} \sqrt {b \arcsin \left (c x\right ) + a} \sqrt {{\left | b \right |}}}{2 \, b}\right ) e^{\left (\frac {i \, a}{b}\right )}}{c {\left (\frac {i \, \sqrt {2} b}{\sqrt {{\left | b \right |}}} + \sqrt {2} \sqrt {{\left | b \right |}}\right )}} - \frac {\sqrt {\pi } d \operatorname {erf}\left (\frac {i \, \sqrt {2} \sqrt {b \arcsin \left (c x\right ) + a}}{2 \, \sqrt {{\left | b \right |}}} - \frac {\sqrt {2} \sqrt {b \arcsin \left (c x\right ) + a} \sqrt {{\left | b \right |}}}{2 \, b}\right ) e^{\left (-\frac {i \, a}{b}\right )}}{c {\left (-\frac {i \, \sqrt {2} b}{\sqrt {{\left | b \right |}}} + \sqrt {2} \sqrt {{\left | b \right |}}\right )}} + \frac {\sqrt {\pi } \operatorname {erf}\left (-\frac {\sqrt {6} \sqrt {b \arcsin \left (c x\right ) + a}}{2 \, \sqrt {b}} - \frac {i \, \sqrt {6} \sqrt {b \arcsin \left (c x\right ) + a} \sqrt {b}}{2 \, {\left | b \right |}}\right ) e^{\left (\frac {3 i \, a}{b} + 1\right )}}{4 \, {\left (\sqrt {6} \sqrt {b} + \frac {i \, \sqrt {6} b^{\frac {3}{2}}}{{\left | b \right |}}\right )} c^{3}} - \frac {\sqrt {\pi } \operatorname {erf}\left (-\frac {i \, \sqrt {2} \sqrt {b \arcsin \left (c x\right ) + a}}{2 \, \sqrt {{\left | b \right |}}} - \frac {\sqrt {2} \sqrt {b \arcsin \left (c x\right ) + a} \sqrt {{\left | b \right |}}}{2 \, b}\right ) e^{\left (\frac {i \, a}{b} + 1\right )}}{4 \, c^{3} {\left (\frac {i \, \sqrt {2} b}{\sqrt {{\left | b \right |}}} + \sqrt {2} \sqrt {{\left | b \right |}}\right )}} - \frac {\sqrt {\pi } \operatorname {erf}\left (\frac {i \, \sqrt {2} \sqrt {b \arcsin \left (c x\right ) + a}}{2 \, \sqrt {{\left | b \right |}}} - \frac {\sqrt {2} \sqrt {b \arcsin \left (c x\right ) + a} \sqrt {{\left | b \right |}}}{2 \, b}\right ) e^{\left (-\frac {i \, a}{b} + 1\right )}}{4 \, c^{3} {\left (-\frac {i \, \sqrt {2} b}{\sqrt {{\left | b \right |}}} + \sqrt {2} \sqrt {{\left | b \right |}}\right )}} + \frac {\sqrt {\pi } \operatorname {erf}\left (-\frac {\sqrt {6} \sqrt {b \arcsin \left (c x\right ) + a}}{2 \, \sqrt {b}} + \frac {i \, \sqrt {6} \sqrt {b \arcsin \left (c x\right ) + a} \sqrt {b}}{2 \, {\left | b \right |}}\right ) e^{\left (-\frac {3 i \, a}{b} + 1\right )}}{4 \, {\left (\sqrt {6} \sqrt {b} - \frac {i \, \sqrt {6} b^{\frac {3}{2}}}{{\left | b \right |}}\right )} c^{3}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x^2+d)/(a+b*arcsin(c*x))^(1/2),x, algorithm="giac")

[Out]

-sqrt(pi)*d*erf(-1/2*I*sqrt(2)*sqrt(b*arcsin(c*x) + a)/sqrt(abs(b)) - 1/2*sqrt(2)*sqrt(b*arcsin(c*x) + a)*sqrt
(abs(b))/b)*e^(I*a/b)/(c*(I*sqrt(2)*b/sqrt(abs(b)) + sqrt(2)*sqrt(abs(b)))) - sqrt(pi)*d*erf(1/2*I*sqrt(2)*sqr
t(b*arcsin(c*x) + a)/sqrt(abs(b)) - 1/2*sqrt(2)*sqrt(b*arcsin(c*x) + a)*sqrt(abs(b))/b)*e^(-I*a/b)/(c*(-I*sqrt
(2)*b/sqrt(abs(b)) + sqrt(2)*sqrt(abs(b)))) + 1/4*sqrt(pi)*erf(-1/2*sqrt(6)*sqrt(b*arcsin(c*x) + a)/sqrt(b) -
1/2*I*sqrt(6)*sqrt(b*arcsin(c*x) + a)*sqrt(b)/abs(b))*e^(3*I*a/b + 1)/((sqrt(6)*sqrt(b) + I*sqrt(6)*b^(3/2)/ab
s(b))*c^3) - 1/4*sqrt(pi)*erf(-1/2*I*sqrt(2)*sqrt(b*arcsin(c*x) + a)/sqrt(abs(b)) - 1/2*sqrt(2)*sqrt(b*arcsin(
c*x) + a)*sqrt(abs(b))/b)*e^(I*a/b + 1)/(c^3*(I*sqrt(2)*b/sqrt(abs(b)) + sqrt(2)*sqrt(abs(b)))) - 1/4*sqrt(pi)
*erf(1/2*I*sqrt(2)*sqrt(b*arcsin(c*x) + a)/sqrt(abs(b)) - 1/2*sqrt(2)*sqrt(b*arcsin(c*x) + a)*sqrt(abs(b))/b)*
e^(-I*a/b + 1)/(c^3*(-I*sqrt(2)*b/sqrt(abs(b)) + sqrt(2)*sqrt(abs(b)))) + 1/4*sqrt(pi)*erf(-1/2*sqrt(6)*sqrt(b
*arcsin(c*x) + a)/sqrt(b) + 1/2*I*sqrt(6)*sqrt(b*arcsin(c*x) + a)*sqrt(b)/abs(b))*e^(-3*I*a/b + 1)/((sqrt(6)*s
qrt(b) - I*sqrt(6)*b^(3/2)/abs(b))*c^3)

________________________________________________________________________________________

maple [A]  time = 0.25, size = 248, normalized size = 0.75 \[ \frac {\sqrt {2}\, \sqrt {\frac {1}{b}}\, \sqrt {\pi }\, \left (12 \cos \left (\frac {a}{b}\right ) \FresnelC \left (\frac {\sqrt {2}\, \sqrt {a +b \arcsin \left (c x \right )}}{\sqrt {\pi }\, \sqrt {\frac {1}{b}}\, b}\right ) c^{2} d +12 \sin \left (\frac {a}{b}\right ) \mathrm {S}\left (\frac {\sqrt {2}\, \sqrt {a +b \arcsin \left (c x \right )}}{\sqrt {\pi }\, \sqrt {\frac {1}{b}}\, b}\right ) c^{2} d -\cos \left (\frac {3 a}{b}\right ) \FresnelC \left (\frac {\sqrt {2}\, \sqrt {3}\, \sqrt {a +b \arcsin \left (c x \right )}}{\sqrt {\pi }\, \sqrt {\frac {1}{b}}\, b}\right ) \sqrt {3}\, e -\sin \left (\frac {3 a}{b}\right ) \mathrm {S}\left (\frac {\sqrt {2}\, \sqrt {3}\, \sqrt {a +b \arcsin \left (c x \right )}}{\sqrt {\pi }\, \sqrt {\frac {1}{b}}\, b}\right ) \sqrt {3}\, e +3 \cos \left (\frac {a}{b}\right ) \FresnelC \left (\frac {\sqrt {2}\, \sqrt {a +b \arcsin \left (c x \right )}}{\sqrt {\pi }\, \sqrt {\frac {1}{b}}\, b}\right ) e +3 \sin \left (\frac {a}{b}\right ) \mathrm {S}\left (\frac {\sqrt {2}\, \sqrt {a +b \arcsin \left (c x \right )}}{\sqrt {\pi }\, \sqrt {\frac {1}{b}}\, b}\right ) e \right )}{12 c^{3}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((e*x^2+d)/(a+b*arcsin(c*x))^(1/2),x)

[Out]

1/12/c^3*2^(1/2)*(1/b)^(1/2)*Pi^(1/2)*(12*cos(a/b)*FresnelC(2^(1/2)/Pi^(1/2)/(1/b)^(1/2)*(a+b*arcsin(c*x))^(1/
2)/b)*c^2*d+12*sin(a/b)*FresnelS(2^(1/2)/Pi^(1/2)/(1/b)^(1/2)*(a+b*arcsin(c*x))^(1/2)/b)*c^2*d-cos(3*a/b)*Fres
nelC(2^(1/2)/Pi^(1/2)*3^(1/2)/(1/b)^(1/2)*(a+b*arcsin(c*x))^(1/2)/b)*3^(1/2)*e-sin(3*a/b)*FresnelS(2^(1/2)/Pi^
(1/2)*3^(1/2)/(1/b)^(1/2)*(a+b*arcsin(c*x))^(1/2)/b)*3^(1/2)*e+3*cos(a/b)*FresnelC(2^(1/2)/Pi^(1/2)/(1/b)^(1/2
)*(a+b*arcsin(c*x))^(1/2)/b)*e+3*sin(a/b)*FresnelS(2^(1/2)/Pi^(1/2)/(1/b)^(1/2)*(a+b*arcsin(c*x))^(1/2)/b)*e)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {e x^{2} + d}{\sqrt {b \arcsin \left (c x\right ) + a}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x^2+d)/(a+b*arcsin(c*x))^(1/2),x, algorithm="maxima")

[Out]

integrate((e*x^2 + d)/sqrt(b*arcsin(c*x) + a), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.00 \[ \int \frac {e\,x^2+d}{\sqrt {a+b\,\mathrm {asin}\left (c\,x\right )}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((d + e*x^2)/(a + b*asin(c*x))^(1/2),x)

[Out]

int((d + e*x^2)/(a + b*asin(c*x))^(1/2), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {d + e x^{2}}{\sqrt {a + b \operatorname {asin}{\left (c x \right )}}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x**2+d)/(a+b*asin(c*x))**(1/2),x)

[Out]

Integral((d + e*x**2)/sqrt(a + b*asin(c*x)), x)

________________________________________________________________________________________